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Some background in random matrix theory:

In his The Classical Groups, Weyl worked out Haar
measure for class functions on the classical compact
groups: U(N), and the orthogonal and symplectic groups.

Let A € U(N) be a unitary matrix, AA* = /, with
eigenvalues e1,... e, 0 < ¢, < 27.

Let f(A) = f(04,...,0n) be a class function on U(N), only
depending on the conjugacy class that A belongs to, i.e. a
symmetric function on the eigenangles 0,.
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Haar measure for class functions on U(N) is given in terms
of its joint probability density function for eigenangles:

<f(A)>U(N) -

1 ; 0 12
f(64, ... O — %" dgy...de

1<j<k<N

f integrable.
The statistics that we will consider:

Eigenangle densities and correlations.
Moments of characteristic polynomials.
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Another formula for this measure.
Define

Sn(0) = sin(N6/2)/sin(6/2),
and take Sy(0) = N. Then

[T |exp(ibx) — exp(i6;)|* = det (S(0k — 6))).
1<j<k<N X

Derive this formula by expressing the I.h.s. as a product of two
Vandermonde determinants:

det (exp(i(k — 1)6))) det (exp(—i(k — 1)6)))

multiplying the two matrices, summing the geometric series,
and simplifying.
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r-point density.

We would like to know, on average over U(N), the number of
eigenangles that lie in an interval [a, b], and more generally, the
density of r-tuples of eigenangles lying in a ‘box’. Let r be a
positive integer, and f : [0,27]" — R an integrable function. For
A € U(N) with eigenangles 0 < 04, ...,0y < 27, we define the
r-point density, weighted by f, to be the sum over all distinct

r-tuples:
> (B, 0;).

/'1 ----- jf
1§ distinct SN

The sum is over r!("Y) ways to select our r-tuples of distinct ’s
from the N eigenangles.
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The main result for U(N), due to Gaudin and Mehta, is:
Theorem: Let 7 : [0,27]" — R be an integrable function. Then

< > f(9j1,...,9,r)>
1</t

{50 Jr
< distinct SN

U(N)

equals the following r-dimensional integral:

1
(27T)r /o’gw]r f(91 ey 9,) (rjs;[(SN(Qk — (9j))d91 e d@,—.
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For r =1 and integrable f : [0, 27] — R, the theorem reads

N N 27
<Z f(@,-)> =5 f(0)de,
=1 U(N) ’

i.e. uniform density on [0, 27]. Here we have used Sy(0) = N.
However, if r = 2, then pairs of eigenangles are not uniformly
dense in the box [0, 27]2. For integrable f : [0,27]> — R, we
have

1
< > f(91,92)> = G /[02]2f(91,92)(N2—SN(02—91)2)d91deg.
U(N) =

1</i#p<N

The integrand is small when 65 is close to 64. The
non-uniformity is reflected in the fact that unitary eigenvalues
tend to repel away from one another.
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Outline of proof. The r-point density is a symmetric function of
the eigenangles. Hence we can find its average by integrating
against the joint probability density function for unitary
eigenangles:

< > f(9j1,...,9,,)> _
1<h

T J
< distinctr SN U(N)

1
Ni(2m)N /[O,ZW]N jZ f(6),:--6;,) det (Sn(6x — 6;))dbs .

{500 jr
< distinct SN

.d



However, the measure above is a symmetric function with
respect to the 6’s (easiest to see from the Vandermonde
squared), so each term in the sum contributes the same

amount, and we get:



However, the measure above is a symmetric function with
respect to the 6’s (easiest to see from the Vandermonde
squared), so each term in the sum contributes the same

amount, and we get:

N 1
I - 0.
r! ( I’) N!(27T)N /[O’ZW]N f(91 ey Qr) 193,’[\/(8,\,(9;( 01))6191 ce d@/\/.
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Two useful properties:

27
SN(HJ- — 0)Sn(O — 0,)do = 27TSN(91' — Ok),

and
2m

Sn(0)df = 27N,
0
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These two properties allow us (Gaudin’s Lemma) to integrate
outw.r.t. ,,1,...0yN and rewrite the r-point density as:

1
(2m)’

/ (61, ....0;) det(Sn(6x — 0,))dbs . .. db.
[0’27_‘_]r rxr
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Scaling Limit
Let f € L'(R"), and normalize the eigenangles

d; = ;N/(2r)

to account for the fact that the eigenvalues are getting more
dense on the unit circle. Then, as N — oo,

< > f(e”j1,...,9”,,)>

150000l
< distinctr <N U(N)

— f(x1,...,x)det(S(xx — x;))dxy ... dxy,
[0700],' rxr

where
S(x) = sin(wx)/(7x).
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Pair correlation
Let f € L'(R). Applying the two point density to the average
pair correlation gives:

1 . .
<N > (k- 9,-).>
1<j#k<N U(N)

N N
_ 1N/0 /O f(xe — x1) det(Sw((xk — x)27/N)/N) s .

(we have changed variables x; = 0;N/(2r)). One can show
that, as N — oo this tends to

_ /Z f(t) (1 - (Si:;ft)Z) dt.




r-point correlations can similarly be defined and evaluated.



r-point correlations can similarly be defined and evaluated.
Let f € L'(R™"). Then, as N — oo,

1 ~ ~ ~ ~
<N > (6, —0,....0, —9,-1)>

1< et <N )
— f(t1 R ) det(S(tk_1 — tj_~| ))dﬁ co.db_q.
Rr_‘] rxr

In the determinant we use the convention that fy = 0.



r-point correlations can similarly be defined and evaluated.
Let f € L'(R™"). Then, as N — oo,

1 ~ ~ ~ ~
<N > (6, —0,....0, —9,-1)>

1< et <N )
— f(t1 R ) det(S(tk_1 — tj_~| ))dﬁ co.db_q.
Rr_‘] rxr

In the determinant we use the convention that fy = 0.



For example, the three-point correlation reads as:

, 1 ~ ~ ~
Nlinoo<N Z F(O — 6}, 0), _91'1)>
<R <N "

1 S(t) S(tp)
_ /Rz it 1)

S(t) 1 S(to—t)
S(k) S(k—t) 1

We have cleaned up the entries of the determinant slightly

using S(—x) = S(x).

dty ...db.
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Zeros of L-functions
Why might the Riemann Hypothesis be true?

Hilbert and Polya: the Riemann Hypothesis is true for
spectral reasons- the zeros of the zeta function are
associated to the eigenvalues of some Hermitian or unitary
operator acting on some Hilbert space.

Katz and Sarnak studied families of function field zeta
functions (for example, associated to the number of
solutions over finite fields of plane algebraic curves). They
were the first to suggest that the statistics of all the
classical compact groups should be relevant for L-functions
over number fields, such as the Riemann zeta function.
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Montgomery achieved the first result connecting zeros of
zeta with eigenvalues of unitary operators.

Write a typical non-trivial zero of { as

1/2 4 i.

Assume RH for now, so that the ~’s are real. The zeros
come in conjugate pairs, so focus on those lying above the
real axis and order them

O<11<1r2<1...
We can then ask about the distribution of spacings
between consecutive zeros:

it — i
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: the zeros become more dense as one goes
further in the critical strip.
Let
N(T)
denote the number of non-trivial zeros of {(s) with
0<3(s) <T.
A theorem of von Mangoldt states that

N(T) = % log(T/(27e)) + O(log T)



Set
. log(hl/(2me))

—7 2T
The mean spacing between consecutive 4’s equals one.




Set

. log 2me

5 =, 09(hl/re))
A

The mean spacing between consecutive 4’s equals one.

It is easier to consider the pair correlation, a statistic
incorporating differences between all pairs of zeros.



Montgomery’s Conjecture
Let 0 < a < (. Then

1 .. . -
1 STi<j<M:5 =75 € [, B)}]
5 . 2
N/ (1_(Sln7rt) )dt.
N mt
as M — .

Notice that the integrand is small when t is near 0. Zeros
of zeta tend to repel away from one another.




Montgomery was able to prove that
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1<i<j<M

as M — oo, for smooth and rapidly decaying functions f
satisfying the stringent restriction that f be supported in
(_1 ’ 1 )

Rudnick and Sarnak generalized this to any primitive
L-function (assuming a weak form of the Ramanujan

conjectures in the case of higher degree L-functions). They

also gave a smoothed version of the above theorem in the

case that RH is false.
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Montgomery was able to prove that
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1<i<j<M

as M — oo, for smooth and rapidly decaying functions f
satisfying the stringent restriction that f be supported in
(—1,1).

Rudnick and Sarnak generalized this to any primitive
L-function (assuming a weak form of the Ramanujan
conjectures in the case of higher degree L-functions). They
also gave a smoothed version of the above theorem in the
case that RH is false.



Odlyzko data: 2 x 108 zeros of zeta near the 1023rd zero.
Pair correlation from data, bins of size .01, versus
1 —sin(wt)?/(rt)>.
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Difference between histogram and prediction.
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There is intricate number theoretic structure in the lower
terms, first described by Bogomolny and Keating, and later
studied using the ‘ratios conjecture’ by Conrey and Snaith.



Let g(z) be holomorphic throughout the strip |Sz| < 2, real on

the real line and even, and satisfy g(x) < 1/(1 + x?) as
x — oo. The Bogomolny and Keating conjecture, in the notation
of Conrey and Snaith, reads:
1 T T t C’ / .
Z 9l — i) = W/o /_Tg(r)<|092 5- +2< (Z) (1 4+ ir)

1<i#]<N(T)

+ (%)_ C(1 —ir)¢(1 + ir)A(ir) — B(ir))) dr dt + O(T'/2+),



2
50 =3 (22 ) @

p

The conjectured O term was not stated in Bogomolny and
Keating’s original formulation of the conjecture. One recovers
Montgomery’s conjecture by letting g(x) = f(x'%%"), and

substituting y = r'%" in the inner integral above.



The figure below, reprinted from Snaith’s paper, compares both
sides of the above conjecture for the first 100,000 non-trivial

zeros of the zeta function, and, for g, many small bins of width
1/40.
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sums over primes:



How Montgomery and Rudnick-Sarnak’s theorems are proven:
Use Weil’s explicit formula to relate sums over zeros of zeta to
sums over primes:

Let e > 0 and ¢(z) analyticin —1/2 —e < (2) <1/2+ ¢ and
satisfy ¢(z) = O(|z|~17¢) in that strip. Assume further that
o(u) = O(exp(—(m + €)u)) as u — co. Then

( )

o) = (60/2)+ o(=if2) — %D jogn

+21—7T /_Z qs(t)ﬁre;m /4 1 it/2)dt

1
2T

A(n) = log(p) if n = p¥, 0 otherwise. The sum on the I.h.s. is
over the non-trivial zeros 1/2 + i~ of {(s) each term counted
with multiplicity of the zero. The Riemann Hypothesis (i.e.

~v € R) is not assumed.
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Let hy and h. be smooth and rapidly decreasing, with
compactly supported Fourier transforms. Assume same for f,
but with 7 supported in (—1, 1). Rudnick and Sarnak consider
the smoothed sums:

Ro(T. 1) = 3= o5/ T T (3 =) ).
J#k

Think of h as pulling out the zeros roughly up to height T.
Theorem (Montgomery , Rudnick-Sarnak version which does

not assume RH).

jm S~ [ mne(rar

‘ /Z f(t) (1 _ (Sizft>2> dt.




To get rid of hy ho approximate x_1 42 analytically by such
functions.



To get rid of hy ho approximate x_1 42 analytically by such
functions. If we assume RH, then hy(v;/ T)ha(vx/T) is
evaluated at real values where it approximates x;_1 1}
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Outline of proof. By Fourier inversion

log T . ’
(5= 5 ) = | itweHormesTan

Substitute into the pair correlation sum R(T, f, h), and
separate the the double sum as a product of two sums over
Zeros:

Ro(T,f h) = /C: (;m <%) eiuvlogT;hz (%) g—iuylog T

_ ; hy (%) ho (%) )?(u)du.

Apply the explicit formula, multiply out all the terms. In a
nutshell: the support condition, |u| < 1 restricts us, on the prime
side, to the region where only the diagonal sum contributes.



R. data
Pair correlation for five million zeros of L(s, x), g = 3.
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R. data
Pair correlation for five million zeros of L(s, x), g = 4.
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R. data
L(s,x), g =5, 4 graphs averaged, 2 million zeros each.
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R. data
300,000 zeros of the Ramanujan tau L-function.
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Katz-Sarnak

Let A be a matrix in one of the classical compact groups:

e Unitary: AA* = I. Eigenvalues on unit circle.

e Orthogonal: AA! = |, real entries. Eigenvalues come in
conjugate pairs. Distinguish SO(2N), vs SO(2N + 1).
Latter always has an eigenvalue at z = 1.

e Unitary Symplectic: A € U(2N),

AlJA=J, J = (_O,N ’g) Eigenvalues come in conjugate
pairs.
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Katz and Sarnak evaluated the average r-point density for
U(N), USp(2N), SO(2N), SO(2N + 1). The scaling limits
are:

Iim< > f(§j1,...,9”,r)>

N—oo J ;
7777 r
dlstlnct <N G(N)

“Jy oy e eas

(U(N) was worked out by Gaudin and Mehta).
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G Wy
U(N) det (Ko(x;, Xk))1§j,k§r
USp(2N) det (K_1(X Xk)) 1< k<,
SO(2N) det (Ki (X, Xk))1§j,k§r
SO(2N + 1) det (K_1 (X/’Xk))1§j,k§r
+ 3201 0(x,) det (K_1(x;, xk)) <jv ktv<r

with

_sin(r(x —y)) __sin(r(x +y))
Ka(Xay)_ 7.(.(X_y) Te 7T(X‘|‘y) .

: Gives a specific test that can be used to detect
the different classical compact groups.
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G wl)
U(N) 1
USp(N) 1= sin(27x)/(27x)
SO(2N) 1+ sin(27x)/(27x)
SO(2N + 1) | 1 — sin(27x)/(27x) + 6(X)




One point densities:

G wl)
U(N) 1
USp(N) 1= sin(27x)/(27x)
SO(2N) 1+ sin(27x)/(27x)
SO(2N + 1) | 1 — sin(27x)/(27x) + 6(X)

Especially sensitive (different answers) to the behaviour
near z = 1.
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Density of zeros for quadratic Dirichlet L-functions
Let

D(X) = {d a fundamental discriminant : |d| < X}

and let xq(n) = (2) be Kronecker's symbol. We consider
the zeros of L(s, xq), quadratic Dirichlet L-functions. Write
the non-trivial zeros above the real axis of L(s, xq) as

1/2 + i\, j=1,2.3...
sorted by increasing imaginary part, and let

7 = ~log(ld|)/(2m)
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distinct

= I35 S5 FO) WG (x)ax,

Assumes f smooth and rapidly decreasing with f
supported in > |uj| < 1. Does not assume GRH.



r-point density for L(s, xq), R.

i ~(d) ~(d ~(d
lImX—>oo Z Ji=1 f(’yjs )7’7/'(2 )7'”77/'5 ))

distinct

= I35 S5 FO) WG (x)ax,

Assumes f smooth and rapidly decreasing with f
supported in > |uj| < 1. Does not assume GRH.

This generalized the r = 1 case that had been achieved by

Ozlilk and Snyder (and also Katz and Sarnak). WSS)p(x)
equals
~ sin(2rx)

’
21X
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Figure: For comparison: Zeros of L(s, x) for a generic complex
primitive Y mod q, g < 5,000. 1-point density is uniform.
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1-point density of zeros of L(s, xq) for 7,000 values of
|d| ~ 10'2. Compared against the random matrix theory
prediction, 1 — sin(27x) /(27 x).



0

One-level density and distribution of the lowest zero of
even quadratic twists of the Ramanujan 7 L-function,
L-(s,xq), for 11,000 values of d ~ 500, 000 vs prediction
(for large even orthogonal matrices), 1 + sin(27x)/(27x).
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Moments of the zeta function.
Obtain the asymptotics, as T — oo, of

T
/ C(1/2 + it) Pt
0

k = 1: Hardy and Littlewood, Ingham
k = 2: Ingham, Heath-Brown

k = 1,2: Smoothed moments by Kober, Atkinson,
Motohashi.
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/T\g(1/2+ it) 2ot
0

Hardy and Littlewood, ~ T log(T)

Ingham, full asymptotics,

Tlog(T/(27)) + T(2y — 1) + O(T"/210g(T))
Balsubramanian, O(T1/3+¢)

lvic, O(T35/108+<)
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Ingham, main asymptotics for k = 2
T
/ C(1/2 + it)|* ot
0

T log(T)*
272
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Heath-Brown, full asymptotics:

/T|<(1/2+ it)|* dt
0

4
=T clog(T)* "+ O(T"/8+)
r=0

co = 1/(27%)
ci = 2(4y—1—log(2r) —12¢'(2)/n?)/n?

with ¢, ¢c3, ¢4 implicitly given but not worked out explicitly
by Heath-Brown.
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T o\ 12k akJk 2
/ C(1/2 + it)|*Xdt ~ T log(T)¥
0 k2|

where g, < 7



Conjecture ( ):

-
/ C(1/2 + it)| 2K dt ~ %mg(r)kz
0 .

where and

o= T1( ) S (e

n=0



Conjecture ( ):
T
/ C(1/2 + it)| 2K dt ~ %mg(r)kz
0 .
where and
RS (n+k—1\?
_ R _n
T S (17

The inner sumis o F(k, k;1;1/p).
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Hardy and Littlewood: g; = 1, Ingham: g, = 2.
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Conjecture, Conrey and Gonek: g, = 24024.
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r - Ak Gk
| 1ct/2+ et ~ Tk og(T)
0

Conjecture, Keating and Snaith:
k—1

j|
(J+ k)

Ok = K*!

j=0
Conrey and Farmer proved that rhs € Z.



T k ak Jk K2
/ C(1/2 + it)|*Xdt ~ o1 log(T)
0

Conrey, Farmer, R., Keating and Snaith conjectured the
full asymptotics.
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Three heuristic approaches to studying the moments:
e Keating and Snaith, based on the analogous result in rmt.
e CFKRS, based on approximate functional equation, guided

by rmt.

e Gonek, Hughes, and Keating, based on combination of the
Weil explicit formula and rmt. Incorporates zeros and
primes. Won't discuss here.
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Keating and Snaith.
Let A € U(N) with eigenvalues exp(if), . ..,exp(ify).
Characteristic polynomial, evaluated on unit circle:

N

pa(2) = [ (z — exp(i6y)) .

1

Let My(n)(2k) denote the 2kth moment, over U(N), of
\pa(exp(if))|. Is independent of 0, i.e. where on the unit
circle we do the average, hence no ¢ in notation for M.
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1
MU(N)(2K) = m /[0 271_]N d91 .o dQN

< JT lexn(itn) — exp(i))|* [pa(exp(i0))**
1<j<k<N

KS, using the Selberg integral:
N

_H F(Hr(2k+j) G(k+1)2 G(N+1)G(N +2k +1)
B Nk+/)2  G2k+1) G(N + k +1)2

j=1

where G is Barnes’ G-function, for Rk > —1/2.
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G is an entire function satisfying
G(1) = 1
G(z+1)=T(2)G(2)

and is given by

G(z+1) = (2r)?/2e TNV TT (1 4 z/n)"e+2/ 2,

n=1
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If 2k € Z, this simplifies

My (2k) =
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KS predicted

1 [T o\ 12k _J k?
7 | ez ot ~ ax [ 7=y oo™

k—1

1
— k]
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Comparing density of zeros of zeta at height T: log T/(27),
v.S. eigenangle density for U(N): N/(2r),
KS predicted

1 (7 | S
?/o ]Q(1/2+/t)]2kdt~akH / Iog(T)"2
j=0

L4 (k)
.e.
k—1 j'
— kI L
o j_H)(/+k)!

Does produce: g1 =1, go = 2, g3 = 42, g4 = 24024.
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Problem with this model: how does the a, arise? Keating
and Snaith method is ad hoc. And, why compare density of
zeros? Seems to produce the right answer, but that is just
good (great!) luck.

Gonek, Hughes, and Keating have developed a hybrid
formula for zeta which expresses it as a truncated Euler
product over primes times a truncated Hadamard product
over zeros. Explains how both the ax and gi arise.



Using number theoretic heuristics, and guided by techniques
and results from random matrix theory, Conrey, Farmer,
Keating, R., and Snaith conjectured:



Using number theoretic heuristics, and guided by techniques
and results from random matrix theory, Conrey, Farmer,
Keating, R., and Snaith conjectured:

For positive integer k, and any € > 0,

T T
/O\C(1/2+it)\2kdt:/0 Py (log L) dt + O(T'/2*°),

where Py is the polynomial of degree k? given implicitly by
the 2k-fold residue...



—1)k 1 1y.e.y 22 A 1y...,22
Pr(x) = (k!z) (2ri)2k j[ % 2 = k z )
HZZK

—_— k [ — j
% @2 2t Z 2k gz dlzok,

with the path of integration over small circles about z; = 0.



k K
F(z1,... 22k) = Ax(z1, - zo) | T T ] €OV + 20 = 21k),
i—1 j=1



k k

F(z1,....2k) = Ax(z1, .., z26) TT [T €1 + 20 = Z14k),
i=1j=1

and Ak is the product over primes:

Ax(z1, ..., Zok)
p
=TI Tt —pt==e)
=

1 k —1 B -1
></ H(1 - e@) x (1 _ el 9)) do.
0 i3 pz 4 pz 2kt

Here e(6) = exp(27i6).



Example, k = 1



Example, k = 1
In this case, A(z1,22) = 1

1 C(1+21 —2)(20 — 21)? X, _
P — L 5 (21—22)
1(x) (2ri)2 ]{ 212222 e dzidz,
= X+ 2v

by extracting the coefficient of z; z> of the numerator.
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In this case, A(z1,22) = 1
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P — L 5 (21—22)
1(x) (2ri)2 ]{ 212222 e dzidz,
= X+ 2v

by extracting the coefficient of z; z> of the numerator.



Example, k = 1
In this case, A(z1,22) = 1

1 C(1+21 —2)(20 — 21)? X, _
P — L 5 (21—22)
1(x) (@) 74 22 e dzydz,
= X+ 2v

by extracting the coefficient of z; z> of the numerator.
So, the full asymptotics of the second moment is given by:

)
/0 (log(/(2)) + 27)dt = Tlog(T/(27)) + T(2y — 1)

consistent with Ingham.
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In this case, Asx(21,22,23,24) = ((2+ 21 + Zo — 23 — Z4)_1,
and computing the residue gives:



Example, k =2

In this case, Asx(21,22,23,24) = ((2+ 21 + Zo — 23 — Z4)_1,
and computing the residue gives:

1 8
Po(x) = ﬁx“ + = (wz - 3g’(2)) X3

6
+ — (—487¢’ @)% — 12¢" @)n? + 7477t + 1447 (2) — 2947t ) AP
™

12
+ — (6’y37r6 — 84+2¢ (2)nt + 24~ ¢ (2)n* — 1728¢7(2)° + 576+¢' (2)% 7P
T

+288¢"(2)¢" (2)7% — 8¢ (2)m* — 10y y7® — pm® — 48v<”(2)7r4)x

4
T+ (_12C““(2)W6 +3672¢" (2)m° + 94*n® 4 217878 1 432¢" (2)%#*
T

+ 3456~ ¢’ (2)¢" (2)m* + 302442¢7 (2)2 1% — 3672~ w8 — 252~2¢" (2)7E
+8yyam® + 721 ¢ (2)7® + 360747 ¢ (2)7° — 2164°¢ (2)°
— 864~1¢’ (2)% 7 + 5ygn® +576¢ (2)¢"" (2)7* — 20736~¢” (2)3 72

— 15552¢""(2)¢’ (2)% 72 — 96~¢"" (2)m® + 62208§’(2)4),

consistent with Heath-Brown.
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We developed formulas and algorithms to compute the
coefficients of Py(x) and found, for example,

Ps(x) = 0.000005708527034652788398376841445252313 x°
0.00040502133088411440331215332025984 x°
0.011072455215246998350410400826667 x’
0.14840073080150272680851401518774 x°
1.0459251779054883439385323798059 x°
3.984385094823534724747964073429 x*
8.60731914578120675614834763629 x°
10.274330830703446134183009522 x°
6.59391302064975810465713392 x
0.9165155076378930590178543.

+ 4+ + + + + + 4+ +



We developed formulas and algorithms to compute the
coefficients of Py(x) and found, for example,

Ps(x) = 0.000005708527034652788398376841445252313 x°
0.00040502133088411440331215332025984 x°
0.011072455215246998350410400826667 x’
0.14840073080150272680851401518774 x°
1.0459251779054883439385323798059 x°
3.984385094823534724747964073429 x*
8.60731914578120675614834763629 x°
10.274330830703446134183009522 x°
6.59391302064975810465713392 x
0.9165155076378930590178543.

+ 4+ + + + + + 4+ +

In our paper we got up to kK = 7. With my Master’s student,
Shuntaro Yamagishi, we extended our tables to kK = 18.



As k grows, the leading coefficients become very small.
Because we are evaluating this as a polynomial in log t/(27),
which increases slowly, the lower terms are very relevant for
checking the conjecture.



As k grows, the leading coefficients become very small.
Because we are evaluating this as a polynomial in log t/(27),
which increases slowly, the lower terms are very relevant for
checking the conjecture.

Hiary-R. have worked out the uniform asymptotics of these
coefficients, in the case of rmt, and partially here. Yamagishi is
considering the same problem for orthogonal and unitary
symplectic moment polynomials.



For example, expand the Keating Snatih U(N) moment
polynomial:

H( / kﬁ(/\/ )) ﬁj (k)N
— +itj+1) ] =) ¢ -
(j + k)! i=0 r=0

j=0




For example, expand the Keating Snatih U(N) moment
polynomial:

hﬁ( / ThN {) ﬁf (k)N
— +itj+1) ] =) ¢ -
(j+k)! i=0 r=0

j=0

and let

. 2k .
J 2k —J
=Y ——+ > =% =klog4 —log(k/2)+1/2 —~v+ O(1/k
z F1W*1+FM41+1 g4 —log(k/2) +1/2 — v+ O(1/



For example, expand the Keating Snatih U(N) moment
polynomial:

hﬁ( / ThN {) ﬁf (k)N
— +itj+1) ] =) ¢ -
(j+k)! i=0 r=0

j=0

and let

. 2k .
J 2k —J
=Y ——+ > =% =klog4 —log(k/2)+1/2 —~v+ O(1/k
z F1W*1+FM41+1 g4 —log(k/2) +1/2 — v+ O(1/

Then, Hiary-R. prove that there exists p > 0 such that, for all k
sufficiently large, a maximal c¢;(k) occurs for some

re (k2 — - plog(k)2/k. K2 — i+ 1+ plog(K)?/Kl,  (3)

and no maximal c¢,(k) occurs outside of that interval.
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8e+07



data(T)/conjecture(T) - 1

0.0003

k=2

0.0002 -

0.0001 - . -

-0.0001 |- °

Graph of:

J7 1 /2+it)) ot

Jo Pe(log(t)/(2m))at

—1,for0 < T <8 x 107,
Agreement is to about 5-6 decimal places out of 12.

8e+07

-0.0002 — =
-0.0003 | | | | | | |
0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07
T



data(T)/conjecture(T) - 1

-0.001

-0.002 ~

k=3
0.003

0.002 -

0.001

T

-0.003 ! ! ! ! ! ! !

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07
T

T .
Graph of: Jy 6 /2+infdt 1,for0 < T < 8 x 10”.

)| Ps(log(1)/(2r))dt

Agreement is to about 4-5 decimal places out of 15.

8e+07



data(T)/conjecture(T) - 1

k=4
0.03

0.02 -

0.01 -

o S e N e A VA s, ™~ o i .
el e e " - o o
-0.01 B
-0.02 _
-0.03 | | | | | | |
0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07
T

o JJ e /2+it) Pt 7
Graph of: fOTOP4(Iog(t)/(27r))dt —1,for0O< T <8 x 10",

Agreement is to about 4 decimal places out of 18.

8e+07



k=5
0.3

0.2 -

0.1 -

0.1 |

data(T)/conjecture(T) - 1

-0.2

03 ! ! ! ! ! ! !

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07
T

S e 2+in"0dt ,
I Ps(log(t)/(2m))dt 1,for0< T <8 x 10’.

Agreement is to about 3 decimal places out of 21.

Graph of:

8e+07



k=6
0.3

0.2 -

0.1 -

0 s N aatie N Wi, o e P NS N
S g R oA = I

data(T)/conjecture(T) - 1

-0.2

03 ! ! ! ! ! ! !

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07
T

S e 2+in 2dt ,
I Ps(log(t)/(27))dt 1,for0< T <8 x 10’.

Agreement is to about 2-3 decimal places out of 25.

Graph of:

8e+07



0.3

k=7

0.2 -

0.1 -

SO o o A NI N,

data(T)/conjecture(T) - 1

TS O A = R
-0.1 -
-0.2 - -
-0.3 | ! | L | | |
0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07
T

Graph of:

S 1 /2+i)| ot

)| Pr(log(t)/(27))dt

—1,for0< T <8x 107,

Agreement is to about 2 decimal places out of 28.



0.3

k=8

0.2 -

0.1 1

data(T)/conjecture(T) - 1

-0.2

-0.3

A 3 N
?¢“\\m‘\\”\\S\\*Q@y\k<ﬁ \\\a\ (RN,

R

T e o)

Graph of:

1e+07 2e+07

I 1 /2+i0)|"C ot

)| Ps(log(t)/(2m))at

3e+07

4e+07 5e+07 6e+07 7e+07
T

8e+07

—1,for0< T <8x 107,

Agreement is to about 1-2 decimal places out of 32.



k=9
0.3

0.2 -

01 L

\M\ \ AN
L ! A A 3
3y " \v‘\\ \\\‘\\ WY \\\\\\‘\ \ \\\\x\\\‘\“\«\\

data(T)/conjecture(T) - 1

T NN A
! ,\\\\ \\M\WW
-0.1 -
-0.2 i
03 | | | | | | |
0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

T

S 1e 2+t Bt B 7
Graph of: T Pooa(D /2t 1,forO < T <8 x 10”.

Agreement is to about 1-2 decimal places out of 36.



data(T)/conjecture(T) - 1

0.5

-0.5

Graph of:

k=10

S 1 /2400 at
I Pio(log(t)/(2m))dt

—1,for0 < T <8 x 107,
Agreement is to about 1 decimal place out of 39.

H \“«\
:F\i_’\ 5 \“\\‘J\ DA ¢ "\‘f"\\"\\\“\\ S vt
LN AN S ————r]
| | | | | | |
0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07
T



k=11

05 - B

> \
()
5 \
= N \'\-.\\ N A
8 of 4 Y \“\W‘ M\\x "\\f"\\\’\\\“ S
C
38 RRE 2\ \\\ \\\'\\\ TN ———]
E
]
©
el

-0.5 |

R | | | | | | |
0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07
T

S e 2+inPdt ,
I Pii(log(t)/(2m))dt 1,for0< T <8 x 10’.

Agreement is to about 1 decimal place out of 43.

Graph of:



k=12

data(T)/conjecture(T) - 1

-0.5 |- -

R | | | | | | |
0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

T

C S 1c/2+it) >t B 7
Graph of: 7 Pralioa(/2m)d 1,forO < T <8 x 10’.

Agreement is to about 1 decimal place out of 47.



k=13

data(T)/conjecture(T) - 1

-0.5 B

K | | | | | | |
0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

T

Sl e 2+inPdt ,
Jy Pia(log(t)/(27))dt 1,for0< T <8 x 10’.

Agreement is to about 1 decimal place out of 51.

Graph of:



