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The four sections of today’s talk

1. Small conductor problems

2. The explicit formula and lower bounds on conductors

3. The smallest conductors coming from special hypergeometric
motives in low degree

4. A motive M = M6 ⊕M8 of particularly small conductor



1. Small conductor problems

Here are some important sequences:

1. Conductors of isogeny classes of elliptic curves are 11, 14, 15, 17,
19, 20, 21, 24, 26, 26, . . .

2. Levels of weight two newforms on Γ0 are 11, 14, 15, 17, 19, 20,
21, 23, 23, 24, 26, 26, . . .

3. Levels of weight four newforms on Γ0 are 5 ,6, 7, 8, 9, 10, 11, 11,
12, . . .

4. Conductors of L-functions looking like they come from abelian
surfaces with Sato-Tate group Sp4 are 249, 277, 295, 349, 353, 388,
389, 394, . . . (Farmer-Koutsoliotas)

5. Paramodular levels of rational degree two Siegel eigenforms with
Sato-Tate group Sp4 in weight three: 61, 73, 79, . . .
(Ash-Gunnells-McConnell; Poor-Yuen)



A conjectural setting

We would like to discuss similar sequences in a very broad context.
To do this in a clean way, we we will assume the fundamental and
widely believed conjecture relating motives, L-functions, and
automorphic forms, centering on L(s,M) = L(s, π).

More precisely, working in the analytic normalization, we assume that

irreducible degree d motives M ∈ M(Q,C) modulo Tate twisting,

are in bijection with

primitive Selberg class L-functions with real spectral parameters,

and these come bijectively from

cuspidal automorphic representations π of GLd(A) with algebraic
infinity type.



Hodge vectors and Gamma factors

Since we are working in the analytic normalization, it is best to
rewrite hp,q as hp−q. We present Hodge numbers of a pure-parity
motive M as a Hodge vector:

(h−w , h2−w , . . . , hw−2, hw )

with hk = h−k . When the parity is even, we consider Hodge vectors
as coming with a refinement h0 = h0+ + h0−.

The Gamma factor of L(M , s) is then

ΓR(s)h
0+

ΓR(s + 1)h
0− ∏

k≥1

ΓC(s +
k

2
)h

k

.

For simplicity, all our explicit examples will have odd parity and so
there will be no ΓR factors.



Sequences belonging to a fixed Hodge vector

As a catch-all, we have the sequence s(h) of conductors of motives
M ∈ M(Q,C) with Hodge vector h. We can consider variants, like
demanding that coefficients be within say Q or R, or demanding
irreducibility, or demanding genericity of the Sato-Tate group. The
five examples again:

1. sQ(1, 1): 11, 14, 15, 17, 19, 20, 21, 24, 26, 26, . . .

2. sR(1, 1): 11, 14, 15, 17, 19, 20, 21, 23, 23, 24, 26, 26, . . .

3. sR(1, 0, 0, 1): 5 ,6, 7, 8, 9, 10, 11, 11, 12, . . .

4. sgenQ (2, 2): 249, 277, 295, 349, 353, 388, 389, 394, . . .

5. sgenQ (1, 1, 1, 1): 61, 73, 79, . . .

The small conductor problem is to go as far as possible
towards identifying initial segments of sequences scondE (h).
When h is at all complicated, at present this often means exhibiting
motives that seem to have small conductor for their setting.



Bunched vs. spread out Hodge vectors

Algebraic geometry easily gives many motives M for particular
unimodal h:

Degree Curves in P2 Surfaces in P3 Three-folds in P4

3 (1, 1) (0, 6, 0) (0, 5, 5, 0)

4 (3, 3) (1, 19, 1) (0, 30, 30, 0)

5 (6, 6) (4, 44, 4) (1, 101, 101, 1)

6 (10, 10) (10, 85, 10) (5, 255, 255, 5)

Automorphic forms most directly contribute to sequences with spread
out Hodge vectors, (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1).

We have been spoiled by h = (1, 1), where both approaches work
well!

In general, we know very little about the sequences s(h). E.g. is the
sequence s irred(1, 0, 0, 2, 3, 3, 2, 0, 0, 1) non-empty?



2. The explicit formula

In this section, we sketch the Guinand-Weil explicit formula as it
appears in Mestre’s 1988 Compositio paper Formules explicites et
minorations de conducteurs de variétés algébriques.

Throughout, we assume the Riemann hypothesis for all L-functions.
Without this assumption, the final lower bound obtained is
considerably weaker.

Mestre emphasizes the Hodge vectors (g , g) for abelian varieties and
(1, 0, . . . , 0, 1) for modular forms. We emphasize here that one gets
non-trivial lower bounds for quite general Hodge vectors h.



The explicit formula

For any motive M with real coefficients and an entire L-function, and
any allowed test function F , the Hodge vector h, the conductor N ,
the analytic rank r , the Frobenius traces cpe = Tr(Frep|M), and the
critical 1/2 + γk i in the upper half plane are related by

logN = 2πr + 4π
∑
k

F̂ (ρk) + 2

∫ ∞
0

F̂ (t)
∑
j

hjEj(t)dt

+2
∑
p

∑
e

cpe
log p

pe/2
F (

log p

2π
).

Today we are thinking of this explicit formula as an infinite family of
exact formulas for logN which can be used to get lower bounds on
logN . There are many other useful perspectives as well!



The Fourier transform and test functions

We require F (x) to be even, compactly supported with F (0) = 1,
and have two continuous derivatives. Its Fourier transform is then

F̂ (t) =

∫ ∞
−∞

F (x)e−2πitxdx .

Among many standard properities is the scaling property: the Fourier
transform of F (x/z) is zF̂ (zt).

In this talk, we used only scaled versions of the Odlyzko function:

FOd(x) = χ[−1,1]

(
(1− |x |) cos(πx) +

sin |πx |
π

)
, (in C 2 but not C 3).

Its Fourier transform is

F̂Od(t) =
8 cos2(πt)

π2(1− 4t2)2
(quartic decay at ∞).

For scaling we use Fz(x) = FOd(2πx/ log z)



Plots of typical test functions

One would like both F and F̂ to very localized, but this is impossible
because of the uncertainty principle. F2 and F13:
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Zero density functions
hjEj(t) is “the negative of the part of the expected zero density due
to the Hodge number hj”. Using ψ(s) = Γ′(s)/Γ(s),

E0+(t) = log π − Re

(
ψ

(
1

4
+

it

2

))
, Ej (t) = 2 log 2π − 2Re

(
ψ

(
1

2
+

j

2
+ it

))
,

E0−(t) = log π − Re

(
ψ

(
3

4
+

it

2

))
.

Graphs of E0+(t) over E0−(t) on the left and (E0(t)), E1(t), E2(t),
and E3(t) on the right:
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Combining the test and density functions

The quantity νz(j) = 2
∫∞
0

F̂z(t)Ej(t)dt appears in the explicit
formula. Graphs of ν2(j), ν13(j), and ν∞(j):
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One has

ν∞(0) = log(8πeγ) ≈ log(44.76) ≈ 3.80,

ν∞(0+) = log(8πeγ+
π
2 ) ≈ log(215.33) ≈ 5.37.



A general lower bound on conductors

Theorem. Let M be a weight w motive with L(s,M) entire and
satisfying the Riemann hypothesis.

Let h = (h−w , h2−w , . . . , hw−2, hw ) be its analytically normalized
Hodge vector and let N be its conductor.

Let z be such that
cq ≥ 0 for q < z .

Define Nz,h = exp
(∑

j h
jνz(j)

)
. Then

N > Nz,h.

The bound for z = 2 applies to all motives, the stronger bound for
z = 3 applies to “half” the motives, etc.



Comparison with modular forms

In the rank two case, the sequence of conductors is known via
modular forms. The first conductor Nw coming from the first motive
Mw is only slightly more than the 2-bound from the theorem.

w hw bound N2,hw Nw form for Mw

1 (1, 1) 5.64 11 (η(z)η(11z))2

2 (1, 0, 0, 1) 3.50 5 (η(z)η(5z))4

3 (1, 0, 0, 0, 0, 1) 2.32 3 (η(z)η(3z))6

7 (1, 0, 0, 0, 0, 0, 0, 1) 1.63 2 (η(z)η(2z))8

9 (1, 0, 0, 0, 0, 0, 0, 0, 0, 1) 1.19 2

11 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) 0.90 1 η(z)24

Using Serre’s improvement of the Hasse-Weil bound on cp, Mestre
increased z from 2 to 3.78 and improved 5.64 to 10.32.



Comparison with a theorem of Zak

A recent theorem of Zak says that, in a very broad range, Hodge
vectors of the middle cohomology of (n − 1)-dimensional varieties are
asymptotically proportional to the nth row of the Eulerian triangle:

1

1 1

1 4 1

1 11 11 1

1 26 66 26 1

1 57 302 302 57 1

As a consequence the hj are roughly Gaussian with standard
deviation

√
(n + 1)/12. This makes the Hodge numbers bunched

enough that N2,h > 1 for n into the hundreds.



The “marker” N∞,h

The theorem applies to reducible motives such as M =
∑11

j=1 h
jMj ,

where it can be fairly sharp, even for z = 2.

However for irreducible motives, the cp, which always have mean
zero, also have standard deviation 1.

For large degree d , this is much less variation than allowed by the
Hasse-Weil bound |cq| ≤ d .

Accordingly, for large degree d we expect that it is quite rare for N to
be less than N∞,h. Thus, especially for large degree d , N∞,h provides
some guidance when working with the sequence s(h).



3. Special HGMs with small conductor

One has many one-parameter families of hypergeometric motives
H(A,B , t), covering e.g. all Hodge vectors in degree < 20.

One cannot expect these families to contain anywhere near all
motives for a given h, since the motives H(A,B , t) tend very strongly
to be very wildly ramified at small primes. Special HGMs, i.e. those
with t = 1, are only ramified at small primes.

On the next three slides, we consider six odd-weight h and look at
the smallest conductors arising from special hypergeometric motives
with motivic Galois group all of GSpd . Currently, for a given h, it is
hard to find motives with smaller conductor.

All analytic ranks are 0 and 1, and those with 1 are have conductors
in italics. There are special HGMs with apparent analytic rank 2 and
3, but their conductors are larger.



Degree two special HGMs with small conductor

h = (1, 1)

N a b

5.6 2-bound

11 actual R-lowest
24 [2, 2, 6] [1, 1, 3]

48 [4, 6] [1, 1, 3]

50 [10] [1, 1, 2, 2]

50 [5] [1, 1, 4]

54 [3, 6] [1, 1, 2, 2]

54 [6, 6] [1, 1, 2, 2]

72 [2, 2, 6] [1, 1, 4]

75 [5] [1, 1, 3]

96 [4, 4] [1, 1, 3]

125.2 ∞-marker

128 [4, 4] [8]

h = (1, 0, 0, 1)

N a b

3.5 2-bound

5 actual R-lowest
6 [2, 2, 3] [1, 1, 6]

8 [2, 2, 2, 2] [1, 1, 4]

12 [2, 2, 2, 2] [1, 1, 6]

16 [2, 2, 4] [1, 1, 1, 1]

16.9 ∞-marker

18 [2, 2, 3] [1, 1, 4]

24 [2, 2, 2, 2] [1, 1, 3]

25 [2, 2, 2, 2] [10]

25 [1, 1, 1, 1] [5]

27 [3, 3] [1, 1, 1, 1]

32 [4, 4] [1, 1, 1, 1]

Note that we are getting many of the small N = 2a3b5c .



Mobile degree four special HGMs with small N

h = (2, 2)

N a b

31.8 2-bound

249 actual Q-lowest

1536 [2, 2, 4, 6] [3, 8]

2592 [2, 2, 6, 6] [1, 1, 4, 4]

6144 [6, 8] [1, 1, 3, 4]

10368 [2, 2, 4, 4] [3, 8]

10368 [3, 8] [1, 1, 2, 2, 4]

10368 [6, 8] [1, 1, 4, 4]

15552 [2, 2, 4, 4] [3, 3, 6]

15552 [3, 6, 6] [1, 1, 4, 4]

15683.6 ∞-marker

h = (1, 1, 1, 1)

N a b

19.7 2-bound

61 actual lowest

96 [4, 4, 6] [1, 1, 1, 1, 3]

128 [2, 2, 8] [1, 1, 4, 4]

384 [4, 4, 6] [3, 8]

384 [3, 4, 4] [1, 1, 2, 2, 6]

384 [2, 2, 2, 2, 6] [1, 1, 3, 4]

384 [3, 8] [1, 1, 4, 6]

486 [3, 3, 6] [1, 1, 1, 1, 2, 2]

768 [2, 2, 4, 6] [1, 1, 1, 1, 3]

2122.5 ∞-marker

Existing complete tables for these h are dominated by conductors
involving large primes, which don’t arise as special HGMs.



Rigid degree four special HGMs with small N

h = (2, 0, 0, 2)

N a b

12.2 2-bound

256 [2, 2, 2, 2, 4] [1, 1, 8]

287.2 ∞-marker

384 [3, 8] [1, 1, 1, 6]

1944 [3, 3, 6] [1, 1, 1, 1, 4]

2048 [2, 2, 8] [1, 1, 1, 1, 4]

2592 [2, 2, 3, 6] [1, 1, 1, 1, 4]

2592 [2, 2, 2, 2, 6] [1, 1, 12]

5000 [2, 2, 5] [1, 1, 1, 1, 4]

5184 [2, 2, 2, 2, 3] [1, 1, 12]

6912 [2, 2, 8] [1, 1, 1, 1, 6]

h = (1, 1, 0, 0, 1, 1)

N a b

8.1 2-bound

32 [2, 2, 2, 2, 2, 2] [1, 1, 4, 4]

48 [2, 2, 3, 4] [1, 1, 1, 1, 6]

96 [2, 2, 2, 2, 3] [1, 1, 4, 6]

105.6 ∞-marker

128 [2, 2, 2, 2, 2, 2] [1, 1, 1, 1, 4]

162 [2, 2, 2, 3] [1, 1, 6, 6]

243 [6, 6, 6] [2, 2, 2, 2, 2, 2]

243 [3, 3, 3] [1, 1, 1, 1, 1, 1]

256 [2, 2, 2, 2, 4] [1, 1, 1, 1, 1, 1]

256 [2, 2, 8] [1, 1, 1, 1, 1, 1]

Note that (2, 0, 0, 2) is hard to make from either algebraic geometry
or automorphic representations, and this is perhaps the “source” of
the large conductors.



4. A factorization M = M6 ⊕M8

The explicit formula lets me numerically resolve two questions I asked
in my October 19 lecture. Here are the relevant parts of that lecture.

The motive M = H([216], [116], 1) has Hodge vector
(1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1), a certified-to-10-digits
Λ(M , s), with conductor 215, sign 1, order of central vanishing 2, and
L′′(M , 8) ≈ 7.851654518.

The first two Frobenius polynomials (two seconds and thirty seconds):

F3(x) = (1 − 268 · 3x + 204193 · 34x2 − 1001800 · 39x3 + 204193 · 319x4 − 268 · 331x5 + 345x6)

(1 + 2992 · x + 39116 · 34x2 − 7596496 · 36x3 − 203836426 · 312x4

−7596496 · 321x5 + 39116 · 334x6 + 2992 · 345x7 + 360x8)

F5(x) = (1 + 1614 · 53x + 28284579 · 54x2 + 1394686516 · 59x3 + 28284579 · 519x4 + 1614 · 533x5 + 545x6)

(1 − 41208 · x − 44999364 · 53x2 − 22376708712 · 56x3 + 3926679014806 · 512x4

−22376708712 · 521x5 − 44999364 · 533x6 − 41208 · 545x7 + 560x8)



Two questions from October 19

The splitting M = M6 ⊕M8 is known a priori from a joint symmetry
t ↔ 1/t and 2↔ 1. The Hodge vectors of the summands are

h6 = (0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0),

h8 = (1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1).

The two Frobenius polynomials suffice to prove that the motivic
Galois group of the two factors are GSp6 and GSp8.

Q1. Since L2(M , s) = 1, there are only two possibilities for
(cond(M6), cond(M8)), namely (26, 29) or (27, 28). Which is it?

Q2. There are only three possibilities for (rank(M6), rank(M8)),
namely (2, 0), (1, 1), or (0, 2). Which one is correct?



Calculating and factoring a few Fp(x)

We have tons of cpe . However, to get the decomposition
cpe = c6pe + c8pe , even for just e = 1, we need to factor all of Fp(x).
The next two (8 minutes and 2.5 hours):

F7(x) =
(
1 + 248232 · 7x + 36864645 · 74x2 − 12114440144 · 79x3 + 36864645 · 719x4+

248232 · 731x5 + 745x6
)
·(

1 + 667104x + 92084011804 · 72x2 + 107704347009888 · 76x3 + 216772203079210 · 713x4

+107704347009888 · 721x5 + 92084011804 · 732x6 + 667104 · 745x7 + 760x8
)

F11(x) =
(
1 − 883812 · 11x + 86399921193 · 114x2 − 113266524342552 · 119x3 + 86399921193 · 1119x4

−883812 · 1131x5 + 1145x6
)

=
(
1 + 34438544x + 7563161639884 · 112x2 − 5931371880123984 · 117x3 + 1164681420132811670 · 1112x4

−5931371880123984 · 1122x5 + 7563161639884 · 1132x6 + 34438544 · 1145x7 + 1160x8
)



Getting a few zeros of Λ(s,M)

Calculating Λ(s,M) with enough precision to make each contribution
to logN very likely accurate to five decimal places gives

ρ1 ≈ 1.93195000805, ρ2 ≈ 3.00559765, ρ3 ≈ 3.61679, . . .

The Hardy Z-function on [0, 7] is

1 2 3 4 5 6 7

-2

2

4

6

Note that this calculation does not give any hints as to the desired
factorization Z (t) = Z6(t)Z8(t). In other words, we do not know
which motive a given ti belongs to.



Applying the explicit formula to M6 and M8

Plugging into the explicit formula, dividing all terms by log 2 for
greater clarity, and keeping track of partial sums:

(Tends to (Tends to

6 or 7) 8 or 9)

term6 total6 term8 total8 Comments

h 3.11324 3.11324 4.86171 4.86171

3 0.17011 3.28335 −0.63306 4.22866

5 −0.35472 2.92864 0.07245 4.30111

7 −0.07386 2.85477 −0.02836 4.27275

9 −0.02269 2.83209 0.00183 4.27458

11 0.00028 2.83237 −0.00101 4.27357

r 2.99946 5.83183 2.99946 7.27303 Forced! A2 = (1, 1)

ρ1 5.83183 1.68061 8.95364 Forced! A1 = (26, 29)

ρ2 0.13610 5.96793 8.95364 Forced!
...

...
...

...
...

Total 6.00000 9.00000



New challenges

Because their Hodge vectors are so spread, the conductors are
actually not that small. Namely, the bound N2,h6 ≈ 1.96 and even the
marker N∞,h6 ≈ 11.29 are much less than 26 = 64, while N2,h8 ≈ 2.91
and N∞,h8 ≈ 29.4 are likewise much less than 29 = 512.

Problem 1. Find motives which have these Hodge numbers but
smaller conductor.

Problem 2. Improve the general hypergeometric theory so that one
can calculate directly on the summands of M([2d ], [1d ],±1). Then
one could work analytically for d up through around 30, explicitly
seeing factorizations like M = M13 ⊕M15.


