Motives with small conductor

David P. Roberts University of Minnesota, Morris

November 19, 2015

The four sections of today's talk

- 1. Small conductor problems
- 2. The explicit formula and lower bounds on conductors

3. The smallest conductors coming from special hypergeometric motives in low degree

4. A motive $M = M_6 \oplus M_8$ of particularly small conductor

1. Small conductor problems

Here are some important sequences:

1. Conductors of isogeny classes of elliptic curves are 11, 14, 15, 17, 19, 20, 21, 24, 26, 26, ...

2. Levels of weight two newforms on Γ_0 are 11, 14, 15, 17, 19, 20, 21, 23, 23, 24, 26, 26, ...

3. Levels of weight four newforms on Γ_0 are 5 ,6, 7, 8, 9, 10, 11, 11, 12, \ldots

4. Conductors of L-functions looking like they come from abelian surfaces with Sato-Tate group Sp_4 are 249, 277, 295, 349, 353, 388, 389, 394, ... (Farmer-Koutsoliotas)

5. Paramodular levels of rational degree two Siegel eigenforms with Sato-Tate group Sp_4 in weight three: 61, 73, 79, ... (Ash-Gunnells-McConnell; Poor-Yuen)

A conjectural setting

We would like to discuss similar sequences in a very broad context. To do this in a clean way, we we will assume the fundamental and widely believed conjecture relating motives, L-functions, and automorphic forms, centering on $L(s, M) = L(s, \pi)$.

More precisely, working in the analytic normalization, we assume that irreducible degree d motives $M \in M(\mathbb{Q}, \mathbb{C})$ modulo Tate twisting, are in bijection with

primitive Selberg class L-functions with real spectral parameters,

and these come bijectively from

cuspidal automorphic representations π of $GL_d(\mathbb{A})$ with algebraic infinity type.

Hodge vectors and Gamma factors

Since we are working in the analytic normalization, it is best to rewrite $h^{p,q}$ as h^{p-q} . We present Hodge numbers of a pure-parity motive M as a *Hodge vector*.

$$(h^{-w}, h^{2-w}, \ldots, h^{w-2}, h^w)$$

with $h^k = h^{-k}$. When the parity is even, we consider Hodge vectors as coming with a refinement $h^0 = h^{0+} + h^{0-}$.

The Gamma factor of L(M, s) is then

$${\Gamma_{\mathbb{R}}(s)}^{h^{0+}}{\Gamma_{\mathbb{R}}(s+1)}^{h^{0-}}\prod_{k\geq 1}{\Gamma_{\mathbb{C}}(s+rac{k}{2})}^{h^k}.$$

For simplicity, all our explicit examples will have odd parity and so there will be no $\Gamma_{\mathbb{R}}$ factors.

Sequences belonging to a fixed Hodge vector

As a catch-all, we have the sequence s(h) of conductors of motives $M \in M(\mathbb{Q}, \mathbb{C})$ with Hodge vector h. We can consider variants, like demanding that coefficients be within say \mathbb{Q} or \mathbb{R} , or demanding irreducibility, or demanding genericity of the Sato-Tate group. The five examples again:

- 1. $s_{\mathbb{Q}}(1,1)$: 11, 14, 15, 17, 19, 20, 21, 24, 26, 26, ...
- 2. $s_{\mathbb{R}}(1,1)$: 11, 14, 15, 17, 19, 20, 21, 23, 23, 24, 26, 26, ...
- 3. $s_{\mathbb{R}}(1,0,0,1)$: 5 ,6, 7, 8, 9, 10, 11, 11, 12, ...
- 4. $s_{\mathbb{O}}^{\text{gen}}(2,2)$: 249, 277, 295, 349, 353, 388, 389, 394, ...

5. $s_{\mathbb{O}}^{\text{gen}}(1, 1, 1, 1)$: 61, 73, 79, ...

The small conductor problem is to go as far as possible towards identifying initial segments of sequences $s_E^{\text{cond}}(h)$. When *h* is at all complicated, at present this often means exhibiting motives that seem to have small conductor for their setting.

Bunched vs. spread out Hodge vectors

Algebraic geometry easily gives many motives M for *particular* unimodal h:

Degree	Curves in \mathbb{P}^2	Surfaces in \mathbb{P}^3	Three-folds in \mathbb{P}^4
3	(1, 1)	(0, 6, 0)	(0, 5, 5, 0)
4	(3,3)	(1, 19, 1)	(0, 30, 30, 0)
5	(6,6)	(4, 44, 4)	(1, 101, 101, 1)
6	(10, 10)	(10, 85, 10)	(5, 255, 255, 5)

Automorphic forms most directly contribute to sequences with *spread* out Hodge vectors, (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1).

We have been spoiled by h = (1, 1), where both approaches work well!

In general, we know very little about the sequences s(h). E.g. is the sequence $s^{\text{irred}}(1, 0, 0, 2, 3, 3, 2, 0, 0, 1)$ non-empty?

2. The explicit formula

In this section, we sketch the Guinand-Weil explicit formula as it appears in Mestre's 1988 *Compositio* paper *Formules explicites et minorations de conducteurs de variétés algébriques*.

Throughout, we assume the Riemann hypothesis for all L-functions. Without this assumption, the final lower bound obtained is considerably weaker.

Mestre emphasizes the Hodge vectors (g, g) for abelian varieties and $(1, 0, \ldots, 0, 1)$ for modular forms. We emphasize here that one gets non-trivial lower bounds for quite general Hodge vectors h.

The explicit formula

For any motive M with real coefficients and an entire L-function, and any allowed test function F, the Hodge vector h, the conductor N, the analytic rank r, the Frobenius traces $c_{p^e} = \text{Tr}(\text{Fr}_p^e|M)$, and the critical $1/2 + \gamma_k i$ in the upper half plane are related by

$$\log N = 2\pi r + 4\pi \sum_{k} \hat{F}(\rho_{k}) + 2 \int_{0}^{\infty} \hat{F}(t) \sum_{j} h^{j} E_{j}(t) dt + 2 \sum_{p} \sum_{e} c_{p^{e}} \frac{\log p}{p^{e/2}} F(\frac{\log p}{2\pi}).$$

Today we are thinking of this explicit formula as an infinite family of exact formulas for $\log N$ which can be used to get lower bounds on $\log N$. There are many other useful perspectives as well!

The Fourier transform and test functions

We require F(x) to be even, compactly supported with F(0) = 1, and have two continuous derivatives. Its Fourier transform is then

$$\hat{F}(t) = \int_{-\infty}^{\infty} F(x) e^{-2\pi i t x} dx.$$

Among many standard properities is the scaling property: the Fourier transform of F(x/z) is $z\hat{F}(zt)$.

In this talk, we used only scaled versions of the Odlyzko function:

$$F_{\mathrm{Od}}(x) = \chi_{[-1,1]}\left((1-|x|)\cos(\pi x) + \frac{\sin|\pi x|}{\pi}\right), \quad (\text{in } C^2 \text{ but not } C^3).$$

Its Fourier transform is

$$\hat{F}_{
m Od}(t) = rac{8\cos^2(\pi t)}{\pi^2(1-4t^2)^2} \hspace{0.2cm} (ext{quartic decay at }\infty).$$

For scaling we use $F_z(x) = F_{\mathrm{Od}}(2\pi x/\log z)$

Plots of typical test functions

One would like both F and \hat{F} to very localized, but this is impossible because of the uncertainty principle. F_2 and F_{13} :

Zero density functions

 $h^{j}E_{j}(t)$ is "the negative of the part of the expected zero density due to the Hodge number h^{j} ". Using $\psi(s) = \Gamma'(s)/\Gamma(s)$,

$$\begin{split} E_{0+}(t) &= \log \pi - \operatorname{Re}\left(\psi\left(\frac{1}{4} + \frac{it}{2}\right)\right), \qquad E_{j}(t) = 2\log 2\pi - 2\operatorname{Re}\left(\psi\left(\frac{1}{2} + \frac{j}{2} + it\right)\right), \\ E_{0-}(t) &= \log \pi - \operatorname{Re}\left(\psi\left(\frac{3}{4} + \frac{it}{2}\right)\right). \end{split}$$

Graphs of $E_{0+}(t)$ over $E_{0-}(t)$ on the left and $(E_0(t))$, $E_1(t)$, $E_2(t)$, and $E_3(t)$ on the right:

Combining the test and density functions

The quantity $\nu_z(j) = 2 \int_0^\infty \widehat{F}_z(t) E_j(t) dt$ appears in the explicit formula. Graphs of $\nu_2(j)$, $\nu_{13}(j)$, and $\nu_{\infty}(j)$:

One has

$$u_{\infty}(0) = \log(8\pi e^{\gamma}) \approx \log(44.76) \approx 3.80,$$

 $u_{\infty}(0+) = \log(8\pi e^{\gamma+\frac{\pi}{2}}) \approx \log(215.33) \approx 5.37.$

A general lower bound on conductors

Theorem. Let M be a weight w motive with L(s, M) entire and satisfying the Riemann hypothesis.

Let $h = (h^{-w}, h^{2-w}, \dots, h^{w-2}, h^w)$ be its analytically normalized Hodge vector and let N be its conductor.

Let z be such that

 $c_q \geq 0$ for q < z. Define $N_{z,h} = \exp\left(\sum_j h^j
u_z(j)\right)$. Then

 $N > N_{z,h}$.

The bound for z = 2 applies to all motives, the stronger bound for z = 3 applies to "half" the motives, etc.

In the rank two case, the sequence of conductors is known via modular forms. The first conductor N_w coming from the first motive M_w is only slightly more than the 2-bound from the theorem.

W	h_w	bound N_{2,h_w}	N_w	form for M_w
1	(1,1)	5.64	11	$(\eta(z)\eta(11z))^2$
2	(1, 0, 0, 1)	3.50	5	$(\eta(z)\eta(5z))^4$
3	(1, 0, 0, 0, 0, 1)	2.32	3	$(\eta(z)\eta(3z))^6$
7	(1, 0, 0, 0, 0, 0, 0, 1)	1.63	2	$(\eta(z)\eta(2z))^8$
9	(1, 0, 0, 0, 0, 0, 0, 0, 0, 1)	1.19	2	
11	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)	0.90	1	$\eta(z)^{24}$

Using Serre's improvement of the Hasse-Weil bound on c_p , Mestre increased z from 2 to 3.78 and improved 5.64 to 10.32.

Comparison with a theorem of Zak

A recent theorem of Zak says that, in a very broad range, Hodge vectors of the middle cohomology of (n - 1)-dimensional varieties are asymptotically proportional to the n^{th} row of the Eulerian triangle:

As a consequence the h^{j} are roughly Gaussian with standard deviation $\sqrt{(n+1)/12}$. This makes the Hodge numbers bunched enough that $N_{2,h} > 1$ for n into the hundreds.

The "marker" $N_{\infty,h}$

The theorem applies to *reducible* motives such as $M = \sum_{j=1}^{11} h^j M_j$, where it can be fairly sharp, even for z = 2.

However for *irreducible* motives, the c_p , which always have mean zero, *also have standard deviation* 1.

For large degree d, this is much less variation than allowed by the Hasse-Weil bound $|c_q| \le d$.

Accordingly, for large degree d we expect that it is quite rare for N to be less than $N_{\infty,h}$. Thus, especially for large degree d, $N_{\infty,h}$ provides some guidance when working with the sequence s(h).

3. Special HGMs with small conductor

One has many one-parameter families of hypergeometric motives H(A, B, t), covering e.g. all Hodge vectors in degree < 20.

One cannot expect these families to contain anywhere near all motives for a given h, since the motives H(A, B, t) tend very strongly to be very wildly ramified at small primes. Special HGMs, i.e. those with t = 1, are only ramified at small primes.

On the next three slides, we consider six odd-weight h and look at the smallest conductors arising from special hypergeometric motives with motivic Galois group all of GSp_d . Currently, for a given h, it is hard to find motives with smaller conductor.

All analytic ranks are 0 and 1, and those with 1 are have conductors in italics. There are special HGMs with apparent analytic rank 2 and 3, but their conductors are larger.

Degree two special HGMs with small conductor

h=(1,1)				h=(1,0,0,1)		
N	а	b		N	а	Ь
5.6	2-b	ound]	3.5	2-bound	
11	actual	\mathbb{R} -lowest		5	actual I	R-lowest
24	[2, 2, 6]	[1, 1, 3]		6	[2, 2, 3]	[1, 1, 6]
48	[4,6]	[1, 1, 3]		8	[2, 2, 2, 2]	[1, 1, 4]
50	[10]	[1, 1, 2, 2]		12	[2, 2, 2, 2]	[1, 1, 6]
50	[5]	[1, 1, 4]		16	[2, 2, 4]	[1, 1, 1, 1]
54	[3,6]	$\left[1,1,2,2\right]$		16 .9	∞ -m	arker
54	[6,6]	[1, 1, 2, 2]		18	[2, 2, 3]	[1, 1, 4]
72	[2, 2, 6]	[1, 1, 4]		24	[2, 2, 2, 2]	[1, 1, 3]
75	[5]	[1, 1, 3]		25	[2, 2, 2, 2]	[10]
96	[4, 4]	[1, 1, 3]		25	$\left[1,1,1,1 ight]$	[5]
125.2	∞ -r	narker		27	[3, 3]	[1, 1, 1, 1]
128	[4, 4]	[8]		32	[4, 4]	[1, 1, 1, 1]

Note that we are getting many of the small $N = 2^a 3^b 5^c$.

Mobile degree four special HGMs with small N

h = (2, 2)					
N	а	Ь			
31.8	2-b	ound			
249	actual	\mathbb{Q} -lowest			
1536	$\left[2,2,4,6\right]$	[3,8]			
2592	$\left[2,2,6,6\right]$	[1, 1, 4, 4]			
6144	[6,8]	[1, 1, 3, 4]			
10368	$\left[2,2,4,4\right]$	[3,8]			
10368	[3,8]	$\left[1,1,2,2,4\right]$			
10368	[6,8]	[1, 1, 4, 4]			
15552	[2, 2, 4, 4]	[3, 3, 6]			
15552	[3, 6, 6]	[1, 1, 4, 4]			
15683.6	∞ -r	narker			

h = (1, 1, 1, 1)					
N	а	Ь			
19.7	2-b	ound			
61	actual lowest				
96	[4, 4, 6]	[1, 1, 1, 1, 3]			
128	[2, 2, 8]	[1, 1, 4, 4]			
384	[4, 4, 6]	[3,8]			
384	[3, 4, 4]	$\left[1,1,2,2,6 ight]$			
384	[2, 2, 2, 2, 6]	[1, 1, 3, 4]			
384	[3,8]	[1, 1, 4, 6]			
486	[3, 3, 6]	$\left[1,1,1,1,2,2\right]$			
768	[2, 2, 4, 6]	[1, 1, 1, 1, 3]			
2122.5	∞ -n	narker			

Existing complete tables for these h are dominated by conductors involving large primes, which don't arise as special HGMs.

Rigid degree four special HGMs with small N

h = (2, 0, 0, 2)					
N	а	b			
12.2	2-b	ound			
256	$\left[2,2,2,2,4\right]$	[1, 1, 8]			
287.2	∞ -m	arker			
384	[3, 8]	[1, 1, 1, 6]			
1944	[3, 3, 6]	[1, 1, 1, 1, 4]			
2048	[2, 2, 8]	[1, 1, 1, 1, 4]			
2592	[2, 2, 3, 6]	[1, 1, 1, 1, 4]			
2592	$\left[2,2,2,2,6\right]$	[1, 1, 12]			
5000	[2, 2, 5]	[1, 1, 1, 1, 4]			
5184	$\left[2,2,2,2,3\right]$	[1, 1, 12]			
6912	[2, 2, 8]	[1, 1, 1, 1, 6]			

	h = (1, 1, 0, 0, 1, 1)			
Ν	а	Ь		
8 .1	2-bo	ound		
32	$\left[2,2,2,2,2,2\right]$	[1, 1, 4, 4]		
48	[2, 2, 3, 4]	$\left[1,1,1,1,6 ight]$		
96	[2, 2, 2, 2, 3]	[1, 1, 4, 6]		
105.6	∞ -m	arker		
128	$\left[2,2,2,2,2,2\right]$	[1, 1, 1, 1, 4]		
162	[2, 2, 2, 3]	[1, 1, 6, 6]		
243	[6, 6, 6]	$\left[2,2,2,2,2,2\right]$		
243	[3, 3, 3]	$\left[1,1,1,1,1,1\right]$		
256	[2, 2, 2, 2, 4]	$\left[1,1,1,1,1,1\right]$		
256	[2, 2, 8]	$\left[1,1,1,1,1,1\right]$		

Note that (2, 0, 0, 2) is hard to make from either algebraic geometry or automorphic representations, and this is perhaps the "source" of the large conductors.

4. A factorization $M = M_6 \oplus M_8$

The explicit formula lets me numerically resolve two questions I asked in my October 19 lecture. Here are the relevant parts of that lecture.

The motive $M = H([2^{16}], [1^{16}], 1)$ has Hodge vector (1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1), a certified-to-10-digits $\Lambda(M, s)$, with conductor 2^{15} , sign 1, order of central vanishing 2, and $L''(M, 8) \approx 7.851654518$.

The first two Frobenius polynomials (two seconds and thirty seconds):

$$\begin{split} F_3(x) &= (1 - 268 \cdot 3x + 204193 \cdot 3^4x^2 - 1001800 \cdot 3^9x^3 + 204193 \cdot 3^{19}x^4 - 268 \cdot 3^{31}x^5 + 3^{45}x^6) \\ &(1 + 2992 \cdot x + 39116 \cdot 3^4x^2 - 7596496 \cdot 3^6x^3 - 203836426 \cdot 3^{12}x^4 \\ &- 7596496 \cdot 3^{21}x^5 + 39116 \cdot 3^{34}x^6 + 2992 \cdot 3^{45}x^7 + 3^{60}x^8) \end{split}$$

$$\begin{split} F_5(x) &= (1 + 1614 \cdot 5^3 x + 28284579 \cdot 5^4 x^2 + 1394686516 \cdot 5^9 x^3 + 28284579 \cdot 5^{19} x^4 + 1614 \cdot 5^{33} x^5 + 5^{45} x^6) \\ &(1 - 41208 \cdot x - 44999364 \cdot 5^3 x^2 - 22376708712 \cdot 5^6 x^3 + 3926679014806 \cdot 5^{12} x^4 \\ &- 22376708712 \cdot 5^{21} x^5 - 44999364 \cdot 5^{33} x^6 - 41208 \cdot 5^{45} x^7 + 5^{60} x^8) \end{split}$$

The splitting $M = M_6 \oplus M_8$ is known *a priori* from a joint symmetry $t \leftrightarrow 1/t$ and $2 \leftrightarrow 1$. The Hodge vectors of the summands are

$$\begin{array}{rcl} h_6 &=& (0,1,0,1,0,1,0,0,0,0,1,0,1,0,1,0), \\ h_8 &=& (1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1). \end{array}$$

The two Frobenius polynomials suffice to prove that the motivic Galois group of the two factors are GSp_6 and GSp_8 .

Q1. Since $L_2(M, s) = 1$, there are only two possibilities for $(\text{cond}(M_6), \text{cond}(M_8))$, namely $(2^6, 2^9)$ or $(2^7, 2^8)$. Which is it?

Q2. There are only three possibilities for $(rank(M_6), rank(M_8))$, namely (2, 0), (1, 1), or (0, 2). Which one is correct?

Calculating and factoring a few $F_{p}(x)$

We have tons of c_{p^e} . However, to get the decomposition $c_{p^e} = c_{p^e}^6 + c_{p^e}^8$, even for just e = 1, we need to factor all of $F_p(x)$. The next two (8 minutes and 2.5 hours):

$$\begin{split} F_7(x) &= \left(1 + 248232 \cdot 7x + 36864645 \cdot 7^4 x^2 - 12114440144 \cdot 7^9 x^3 + 36864645 \cdot 7^{19} x^4 + \\ & 248232 \cdot 7^{31} x^5 + 7^{45} x^6\right) \cdot \\ & \left(1 + 667104x + 92084011804 \cdot 7^2 x^2 + 107704347009888 \cdot 7^6 x^3 + 216772203079210 \cdot 7^{13} x^4 \\ & + 107704347009888 \cdot 7^{21} x^5 + 92084011804 \cdot 7^{32} x^6 + 667104 \cdot 7^{45} x^7 + 7^{60} x^8\right) \end{split}$$

$$F_{11}(x) = \left(1 - 883812 \cdot 11x + 86399921193 \cdot 11^4 x^2 - 113266524342552 \cdot 11^9 x^3 + 86399921193 \cdot 11^{19} x^4 \\ & - 883812 \cdot 11^{31} x^5 + 11^{45} x^6\right) \end{aligned}$$

$$= \left(1 + 34438544x + 7563161639884 \cdot 11^2 x^2 - 5931371880123984 \cdot 11^7 x^3 + 1164681420132811670 \cdot 11^{12} x^4 \\ & -5931371880123984 \cdot 11^{22} x^5 + 7563161639884 \cdot 11^{32} x^6 + 34438544 \cdot 11^{45} x^7 + 11^{60} x^8\right) \end{split}$$

Getting a few zeros of $\Lambda(s, M)$

Calculating $\Lambda(s, M)$ with enough precision to make each contribution to log N very likely accurate to five decimal places gives

 $\rho_1 \approx 1.93195000805, \ \rho_2 \approx 3.00559765, \ \rho_3 \approx 3.61679, \ \ldots$

The Hardy Z-function on [0,7] is

Note that this calculation does not give any hints as to the desired factorization $Z(t) = Z_6(t)Z_8(t)$. In other words, we do not know which motive a given t_i belongs to.

Applying the explicit formula to M_6 and M_8

Plugging into the explicit formula, dividing all terms by log 2 for greater clarity, and keeping track of partial sums:

		(Tends to		(Tends to	
		6 or 7)		8 or 9)	
	term ₆	$total_6$	term ₈	$total_8$	Comments
h	3.11324	3.11324	4.86171	4.86171	
3	0.17011	3.28335	-0.63306	4.22866	
5	-0.35472	2.92864	0.07245	4.30111	
7	-0.07386	2.85477	-0.02836	4.27275	
9	-0.02269	2.83209	0.00183	4.27458	
11	0.00028	2.83237	-0.00101	4.27357	
r	2.99946	5.83183	2.99946	7.27303	Forced! $A2 = (1, 1)$
ρ_1		5.83183	1.68061	8.95364	Forced! $A1 = (2^6, 2^9)$
ρ_2	0.13610	5.96793		8.95364	Forced!
÷	÷	÷	÷	÷	
Total		6.00000		9.00000	

New challenges

Because their Hodge vectors are so spread, the conductors are actually not that small. Namely, the bound $N_{2,h_6} \approx 1.96$ and even the marker $N_{\infty,h_6} \approx 11.29$ are much less than $2^6 = 64$, while $N_{2,h_8} \approx 2.91$ and $N_{\infty,h_8} \approx 29.4$ are likewise much less than $2^9 = 512$.

Problem 1. Find motives which have these Hodge numbers but smaller conductor.

Problem 2. Improve the general hypergeometric theory so that one can calculate directly on the summands of $M([2^d], [1^d], \pm 1)$. Then one could work analytically for d up through around 30, explicitly seeing factorizations like $M = M_{13} \oplus M_{15}$.